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ABSTRACT

In this paper we analyze the effect of several improvements of the input physics of a recent model for stellar
turbulent convection. We first study the effect of (1) the inclusion of a variable molecular weight (Cox &
Giuli’s variable Q) and (2) the use of the newest opacities of Rogers & Iglesias. On the basis of the evolution-
ary tracks for the Sun (Fig. 2, curves 1 and 2), we conclude that the original model for turbulence with the
mixing length A = z, together with §Q # 1 and the new opacities, yields a fit to the solar T within 0.5%. The
model has no adjustable parameters.

Second, we propose a formulation of the mixing length A that extends the purely nonlocal A = z expression
used in our previous work so as to include local effects. We derive the expression A = «S, a)z, where § =
1604%V — V,,) and where 1 — a represents the weight of local effects. The new expression generalizes both the
mixing-length theory (MLT) phenomenological expression A = aH , as well as our model A = z. By adjusting
the parameter a we can achieve an even better fit to the solar T.;;. However, we also conclude that as long as
one is interested in evolutionary studies only, the new version of the mixing length is not quite necessary since
the previous model has no free parameters and yet yields a fit to T, within 0.5%. We point out, however,
that this new model for A may become instrumental in helioseismology where one needs to fit the solar radius

considerably more accurately than in evolutionary studies.
Finally, in § 7 we use qualitative and quantitative arguments to discuss the new model versus the standard
MLT and give reasons why we believe that the MLT should be abandoned.

Subject headings: convection — stars: interiors — Sun: interior — turbulence

1. INTRODUCTION

Recently the authors (Canuto & Mazzitelli 1991, hereafter
CM) have suggested a new model to treat turbulent convection
in stars. The distinguishing feature of this model is that it is no
longer a one-eddy model like the mixing-length theory (MLT),
for it includes the full spectrum of turbulent eddies. To account
for the nonlinear interactions that yield such a spectrum, CM
employed the EDQNM turbulence model which has been
thoroughly tested in a variety of turbulence problems (Lesieur
1990).

Among the advantages of the CM model is that it contains
no adjustable parameters since the mixing length is taken to be
the geometrical depth inside the convective zone. The absence
of free parameters obviously requires that the modeling of all
other physical processes be as accurate as possible, which is
not methodologically feasible with the MLT in which improve-
ments on the input physics are somewhat a moot point since
they can conceivably be represented by a different value of a.
Under this new approach, we discuss two improvements to the
original CM model, namely the following:

1. Variation of the molecular weight within the convective
zone, which was neglected in CM; and
2. A new set of radiative opacities.

By inserting these into the original CM model, we find that
the observed solar T is reproduced within 0.5%.

In the second part of the paper, we extend the CM model for
A, which took into account only nonlocal effects, so as to
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include also local effects (defined more precisely in § 5.2) rep-
resented by a parameter a. The new relation is A = «S, a)z (eq.
[97); for a =1, we recover the CM expression A = z. By
adjusting the local versus nonlocal contribution to A, we can
achieve a fit to the solar T even better than 5%, but we
conclude that it represents an unnecessary precision, at least as
far as evolutionary studies are concerned. This more sophisti-
cated model may, however, become very useful in helio-
seismology where the requirements of accuracy in the
prediction of the solar T, and thus of the solar radius far
exceed that of interest in evolutionary studies.

Thus, we suggest that the original CM model with the two
above additions is the model to be used in evolutionary studies
for it contains no free parameters and fits the Sun very well.

In the last part of the paper, we discuss the MLT and specifi-
cally the basic assumption that the Sun-tuned value of the
parameter « could meaningfully be used in other stars. Since
the calibration of « depends on the low-T opacities, which are
more uncertain for metal-rich than for metal-poor mixtures,
the tuning of « on a metal-rich star like the Sun is inadequate
for metal-poor stars like globular clusters. We then introduce
the concept of a dilution function of the overadiabatic gradient
and show that its widely different shape in the Sun and other
stars renders the basic MLT assumption untenable.

Our final conclusion is that the CM model should be pre-
ferred to the MLT even if the former did not fit the Sun with
the same accuracy of the MLT. In fact, not only is the physical
description of the temperature and density inversions in the
convective zone more sound in the CM than in the MLT
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model, but within the CM model improvements on the input
physics (low-T opacities, nonideal gas thermodynamics, etc.)
will not be masked by the resetting of adjustable parameters.

2. VARIABLE MOLECULAR WEIGHT

According to Cox & Giuli (1968, eq. [14.70], hereafter CGJ,
the quantity A entering the definition of the convective effi-
ciency can be written as

A = QY¥(c, xp*A*12acT?) ™ Y(g/2H )%, 6y
with Q given by

Q=@4-3pp"' —(@npudnT),, @

where B = P(gas)/P(total) accounts for the effect of radiation
pressure.

In most stellar computations, it is customary to set § = 1, as
was done in CM, since the evaluation of the derivative term in
equation (2) is not only time consuming, but can also cause
numerical instabilities in the resulting values of the over-
adiabatic gradient. On the other hand, since in the solar sub-
atmosphere Q = 1.4-1.5, even if the contribution of radiation
pressure is negligible, a consistent application of the CM model
requires the inclusion of Q. It is worth recalling that the only
variation of molecular weight we are interested in is the one
due to molecular dissociation and atomic ionization at con-
stant elemental distribution, and not the more general one
entering the definition of the Brunt-Vaisala frequency which
accounts for gradients in the concentration of elements caused
by nuclear reactions and/or gravitational settling (Zahn 1991).
To further clarify this point, we provide a derivation of how to
include a variable u (see the Appendix).

3. NEW OPACITIES

We have employed the latest radiative opacities derived by
F. J. Rogers & C. A. Iglesias (1991, private communication),
supplemented by the ATLAS values for T < 6000 K (Kurucz
1991). For both cases, the metal mixture is taken from Anders
& Grevesse (1989). Although we have used the ATLAS values
only in the optical atmosphere, we did check that in the range
6000 K < T < 10,000 K, the two sets of opacities merge
smoothly. This is, however, not so for other low-T opacities
available in the literature: for example, according to our tests,
D. R. Alexander’s opacities (1990, private communication) for
T < 1000 K yield a T, about 2% larger than our value, while
the opacities by Weiss et al. (1991, metal mixture WKM10}
yield a T ¢ about 2% lower than ours.

4. THE COMPLETE SOLAR MODEL

Although the evolutionary code employed in this paper has
been described in detail in Mazzitelli (1989), it is important to
recall some of the main features:

1. Thermodynamics: The equation of state for a nonideal
gas, with variable degree of ionization, is taken from the work
of Magni & Mazzitelli (1979).

2. Opacity: See § 3.

3. Optical atmosphere: A simple T(r) relation (Henyey,
Vardya, & Bodenheimer 1965) was adopted all the way down
to ¢ = % or to the onset of convection.

4. The nuclear network accounts for the following elements:

lH 3He 4He 12C 13C 13N 14N 15N 160 170

and the corresponding 15 nuclear reactions of the largest cross
sections; we have also added the beryllium branching and the
13N decay, according to Fowler, Caughlan, & Zimmerman
(1975) and Harris et al. (1983). The distribution of the CNO
elements follows Ross & Aller (1976), while the total metal
abundance Z was taken equal to 0.018.

5. Numerical features: The code performs a straightforward
Newton-Raphson integration up to the base of the optical
atmosphere with the mass m(r) as the independent variable.
The thermodynamics tables are linearly interpolated in the
variables log T, log p, and Y (via the additive volume law),
using five tables of different He content; for the opacities, cubic
spline functions are used to interpolate in log T and log p, and
quadratic in log Z (metal content)and Y.

The optical atmosphere is integrated using the optical depth
as an independent variable (about 100 mesh points), and the
number of internal mesh points varies between 600 and 700. To
reach the present solar luminosity, the evolution takes about
200 time steps of different duration depending on the specific
phase. The chemical evolution scheme in the radiative regions
follows the linearization procedure of Arnett & Truran (1969)
and a zero-order Runge-Kutta scheme in the rapidly vanishing
convective core.

With the above numerical scheme and input data, the initial
helium abundance Y required to obtain the present solar lumi-
nosity of 3.846 x 10°% ergs s, at an age of 4.6 Gyr (an
average of the values given by Guenther 1989, Bahcall &
Ulrich 1988, and Demarque, Guenther, & Van Altena 1986)
turns out to be Y = 0.287.

5. THE MIXING LENGTH A

5.1, The CM Nonlocal Model A = z

As discussed in CM, a treatment of compressible turbulent
convection would provide both the convective flux and a unit
of length. The latter is expected to be the pressure scale height,
and physical arguments in support of that view were presented
in CM. On the other hand, if one treats turbulence as incom-
pressible, the problem does not provide a unit of length, with
the implication that the mixing length A cannot be determined
from within the formalism itself. In recognition of the fact that
in fully compressible turbulence, H, would be the natural unit
of length, one writes A = «H, and then fixes a using stellar
data.

In CM we proposed a model for A based on a physical
analogy with the case of mechanically driven turbulence. In
that case, only relatively large wavenumbers become unstable
which correspond to small-eddy turbulence; large eddies are
absent. The lack of large structures implies that the ensuing
turbulence is an essentially local phenomenon, and the corre-
sponding mixing length depends more on local variables than
on the nonlocal ones. This is no longer the case for thermally
driven turbulence (convection) in which both large and small
eddies are present. In this case A must be written as

A=A, 2), 3)

where the length £ represents local variables and z represents the
nonlocal one. In CM it was suggested that since in the case of
convection the nonlocal dependence is more relevant (large
eddies carry most of the flux), equation (1) may be approx-
imated by

A= AR, 4
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of which the simplest form is
A=z, (5)

which is the form used in CM. Equation (5) accounts for the
phenomenon of vertical stacking of the eddies, has no free
parameters, yields a reasonable fit to the Sun’s data, and yet is
not fully satisfactory for it accounts for nonlocal effects only.

5.2. How to Include Local Effects

We endeavor to construct a more complete model for A so
as to account for both the z- and /-dependence. This confronts
us with two new problems: first we must construct an expres-
sion for the local length ¢, and second we must construct the
function (3). Before we do so, we notice that since we use the
incompressible model of turbulence developed in CM to
compute 7, the result will be of the form

¢/IA =f(S), (6)

that is, the local length ¢ will be given in units of the only
length that appears in the problem, the unknown mixing
length A. Equation (3) thus becomes an implicit relation for A.
We shall use the CM model to compute the values of the
dimensionless function f(S) versus S, where

S=1624%V —V,,). %)

Equation (6) will be derived in § 5.3 and equation (7) in the
Appendix.

Given these premises, let us first construct the function A. To
do so, we begin by suggesting that the relevant physical vari-
ables are not A, /, and z themselves but rather In A, InZ, Inz.
The model we suggest consists of taking In A as a linear com-
bination of the two other variables,

InA=alnz+bln¢ (8a)
or
A=z, (8b)
with a = 1 — b. Substituting equation (6) for Z, we obtain
A= oS, a)z, (9a)
where
S, a) =f(S)L e, (9b)

Equations (9) represent the new formula for A. It may be
noticed that since for a polytrope H, = p/pg ~ z, equation (9a)
can also be viewed as a generalization of the standard relation

A=qH, (10)

with the important difference that « is no longer an unknown
quantity but a variable that we shall compute. The CM model,
A =z, corresponds toa = 1.

5.3. Evaluation of the Functionf(S)

We suggest that £/ be identified with the average over all
wavenumbers of the mean free path A(k) of an eddy of arbitrary
wavenumber k,

_ | Mk)G(k)dk
‘= { Glkydk (h
with G(k) taken to be the convective flux, that is,
G(k) = E(k)[nyk) + vk*], (12)
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where n(k) is the rate at which the thermal instability injects
energy into the flow (CM, eq. [18]) and E(k) is the turbulent
energy spectrum solution of the nonlinear equation (20) of CM.
Graphical representations of E(k) can be found in Figures 1-4
of CM. The integrals in equation (11) extend over all wave-
numbers, that is, one integrates over eddies of all sizes. It
remains to define the mean free path A(k). Since the choice is
not unique, we have investigated two alternatives which fortu-
nately yield comparable results. The first choice,

ME) = 20k , (13)

identifies A(k) with the size of an eddy.
Alternatively, we may write

Mk) = u(kye(k) , (14)

where (k) is the lifetime of an eddy and (1/2)u(k)? is the kinetic
energy of a band of wavenumbers centered around the wave-
number k, that is,

k
u(k)? = L E(p)dp . (15)

To evaluate t(k), we may identify it with the correlation time
scale governed by the nonlocal interactions which, as
explained in CM, are primarily determined by a turbulent vis-
cosity, v(k), representing the effect of all the eddies smaller than
k! onit. In that case,

k)~ = K[y + v(k)], (16a)

where

vik) = (35) J;wf(p)[5E(p) + PE'(p)ldp . (16b)

Substituting equation (16a), we obtain

w© 1/2
vdk) = {% £ p2[SE(p) + PE'(p)]dP} —v, (l6c)

which expresses v(k) entirely in terms of the energy spectral
function E(k). Finally, using equations (15) and (16a), we have
from equation (14}

[2 |6 E(p)dp]'?
Ky + (k)]

Using the formalism developed in CM and the numerical
results for E(k) obtained there, we have evaluated equation
(11) and written the result as in equation (6). The resulting
dimensionless functions f(S) versus § are given in Table 1 and
Figure 1.

Ak) = a7

TABLE 1
VALUES OF THE FUNCTION f(S) VERSUS S*
log § 15 )
2, 1.7558 1.0994
4o 0.9318 0.9202
6. e 0.7106 0.7544
8 0.5954 0.6638
10, 0.5446 0.6190
120 0.5204 0.5958
4. 0.5078 0.5778
16, 0.5124 0.5860

* The two sets of values of f(S) corre-
spond to the average of equations (13) and
(14) over the convective flux.
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Fic. 1.—The function f(S) vs. S. Curves a and b correspond to expressions
(13)and (17)in eq. (11). See also Table 1.

15 16

6. RESULTS

To appreciate the changes brought about by each of the
changes, we shall proceed as follows:

1. New opacities only (CM model, A =z, Q =1)—The
resulting evolutionary track is presented in Figure 2 (curve 1).
The fit is not fully satisfactory for it yields a value for T ¢ ~ 2%
lower than the observed value. The difference with the result
presented in CM is due to the new opacities which are larger
than D. R. Alexander’s (1990, private communication) by up to
afactor of 2.

2. New opacities and Q # 1 (CM model, A = z)—The new
track is represented by curve 2 of Figure 2: the predicted T is
0.5% lower than the observed value. The increase in T can
easily be explained: in regions of partial ionization, Q is always
larger than 1 since the molecular weight increases as the tem-
perature decreases; in addition, since the numerical value of
the variable A is affected in the same way, the overadiabatic
excess is consequently reduced, leading to a larger value of T4
(the larger the value of A4, the lower the adiabaticity).

3. Newopacities,Q # 1 and new mixing length, A = «(S, a)z.—
As a first step, we verified that the two models for f(S)

T T T
0.05F -
4
Log L/Lg > 2 !
0.00+ ~
-0.05+ i
1 i 1

376

375
Log Tess

F1G. 2—A blowup of the theoretical HR diagram in the vicinity of the Sun,
marked with the solar symbol, and with the observational error bar in log T;.
Curve 1 is the track according to CM, A = z, @ = 1, and with chemical and
numerical updates in the code; curve 2, A =z, @ 5 1; curve 3, A = o(S)z,
a=2and @ # l;curve4,A = o(S)z,a = 0.7,and Q # 1.
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described in § 5 yield almost identical results. We then tested
two cases: a = 2 and 0.7, curves 3 and 4 of Figure 2, respec-
tively. Although the resulting difference in T is rather small
(~0.5), some conclusions can be reached. Given the behavior
of f(S) versus S (Table 1) and equations (9), choosing a < 1
leads to A > z for layers close to the surface of the star and
A < z for the deep layers; the opposite attains if one chooses
a > 1. Let us consider the latter case. As already discussed, the
lower the value of A (~ A?), the larger the overadiabatic excess
V — V_4. In this light, the choice a > 1 leads to a taller peak of
V — V,, at the top of the CZ, as well as to a faster decay (with
respect to the a = 1 case). Since this model fits the Sun better
than the other we have tried, with this test we have gained
valuable information for future development of the theory.

In conclusion, we note the following the original CM model
with A = z, supplemented by Q # 1 and the new opacities, fits
the Sun within the overall theoretical uncertainties. Thus, we
recommend this model when computing stellar structures and
evolutionary tracks for general purposes. By the same argu-
ment, we strongly discourage the tuning of the parameter a
other than for numerical experiments on the theory of convec-
tion as such (as we have done above) or for very few specific
tasks, like the construction of models for helioseismology.

7. WHY THE MLT SHOULD BE REPLACED

The lack of a viable alternative to the MLT, and the lure of
both its simplicity and its apparent ability to fit the T, of
almost any star by the simple device of adjusting a single free
parameter, have undoubtedly played a significant role in its
widespread acceptance in evolutionary studies. Over the years,
the conviction was created that one can carry out meaningful
comparisons between theory and observations, and thus arrive
at seemingly precise quantitative conclusions based on differ-
ences in T, of the order of a very few percent. For example, we
believe that the age of globular clusters is also affected by the
model of turbulent convection that one adopts, even though
this is by no means the only factor since element distribution,
gravitational and thermal diffusion of helium, etc., can play an
equally important role. Before any reasonably sound claim can
be made, one must therefore analyze many interacting factors,
and this requires a detailed comparison between theory and
observations.

To justify the contention that the MLT be replaced by a new
model, we put forward qualitative and quantitative arguments
suggesting that the standard procedure of tuning a on the Sun
and then using the result for other stars is invalid.

The qualitative argument stems from considerations about
opacities. As we know, the low-temperature radiative opacities
are far from being known with the required accuracy. More
importantly, it is expected that the uncertainties in the opac-
ities be a function of the chemical composition. In fact, in
metal-rich mixtures, atomic and molecular transitions domi-
nate, as do the few free electrons (due to metals at low
temperature), through the appearance of H™, etc. For metal-
poor mixtures, even if the problems are in principle the same,
the global effect of metals on the quantitative evaluation of the
opacities is smaller, so that the uncertainties in the low-
temperature opacities are expected to be larger for metal-rich
than for metal-poor mixtures.

This leads us to conclude that an « tuned on a metal-rich
star like the Sun cannot, in principle, be used to treat stars that
are metal poor, for example, globular clusters, since the Sun-
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tuned MLT resets also the uncertainties in the solar opacities,
which are different from the uncertainties in the opacities of
metal-poor stars. Moreover, the solar tuning of « entails a
narrow range of T and p, mainly those of the solar sub-
atmosphere, which are different from those found in the sub-
atmospheres of other stars (e.g.,, red giants). Here again, since
different ranges of T and p can introduce different uncer-
tainties in the opacities, the Sun-tuned values may not be con-
sistent with the physics of these stars. Similar arguments have
been put forward before (VandenBerg 1983, 1985; Pedersen,
VandenBerg, & Irwin 1990). However, because of the lack of a
viable alternative to the MLT, almost all the comparisons
between theory and observations have been based on the Sun-
tuned values of « (VandenBerg 1985; VandenBerg & Bell 1986;
Chieffi & Straniero 1989; Sarajedini & Demarque 1990).

The semiquantitative argument stems from the fact that the
scale length adopted in the MLT is far wider than the one
expected on physical grounds. In other words, in the MLT one
uses a scale length of the order of 2H,, to compute the local
value of the overadiabatic gradient which, according to the
same MLT, rises steeply, reaches a narrow maximum, and
rapidly decays in a few tenths of H,. Although we cannot offer
a mathematical proof, it is reasonable to expect that the use of
a manifestly incorrect and exceedingly large A (so that the real
phenomenon is forced to occur entirely within a small fraction
of A), should lead to an artificial spreading and dilution of the
peak of overadiabaticity. Indeed, inspection of Figure 8 of CM
reveals that the overadiabatic peak is definitively shallower in
the MLT than in the CM model.

The physical justification behind this different behavior is
twofold. The first reason lies in the different convective fluxes
F_ in the MLT versus the CM models: at low S, close to the
surface, F (CM) < F (MLT), whereas for large S, F(CM) ~
10F (MLT). In the upper convective layers this requires that
the CM overadiabaticity be larger than MLT. This conclusion
is clearly the result of comparing two models: it does not prove
that use of a more correct A should give rise to a sharper
overadiabatic peak.

The proof of the last statement comes from considering the
second argument: the lower the value of A4 in equation (1), the
lower the convective flux is and the larger the overadiabaticity
has to be. Since A is proportional to A2, as one moves from,
say, 2H , to (smaller) values, of the same order of magnitude of
the scale length characterizing the rise and fall of the over-
adiabatic peak, the value of A decreases of orders of magni-
tude, and the overadiabaticity peak becomes much taller also
in the MLT framework.

This argument is independent of the CM model and shows
that use of a more physically correct mixing length would in
any case predict overadiabatic peaks much higher than what is
currently derived from standard stellar models, that is, MLT
with A = aH .

Of course, even if the above argument is agreed upon, one
could still adopt the restricted viewpoint that getting the
correct value of T, is already an achievement (considering the
crudeness of the MLT), even if one is forced to give up a
credible description of the actual behavior of the temperature
profile in the subatmosphere. In other words, one might be
willing to accept the unreliable MLT local values of tem-
perature in the subatmosphere so long as the integral of the
temperature profile along the subatmosphere yields the correct
value of T .

This, indeed, seems to have been the prevailing attitude

CANUTO & MAZZITELLI
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toward the MLT. However, not only have recent studies on
pulsational properties of stars stressed the importance of a
reliable determination of the internal temperature profiles, but
it is also our contention that for this last attitude toward the
MLT to be acceptable, a further requirement has to be met: the
“dilution function” of the overadiabatic gradient, once tuned to
the Sun, must be the same for any other star.

A detailed knowledge of the “dilution function” is fortu-
nately not required since at every point along the sub-
atmosphere, we expect it to be a function of the ratio between
the overall scale length adopted in the theory and the geo-
metrical scale length according to which the physical mecha-
nism evolves locally. It will then be a function of the ratio
R = aH,/z, where z is the geometrical distance from the top of
convection. To quantify the argument, we used the MLT to
compute two models: the Sun and a star of 0.8 M, with
Y =023, Z=0.001. In the HR diagram, these stars have
almost the same position, and the latter is representative of
stars at the turnoff in globular clusters. We adopted the Los
Alamos (Weiss, Keady, & Magee 1991) low-temperature opac-
ities so that in order to fit the Sun, we must have « = 2. Other
choices of opacity and « would not change the gist of our
argument.

The behavior of the convective gradients and of R for the
two stars is shown in Figure 3. For the Sun, the peak of over-
adiabaticity is reached in a region where the value of the ratio
R is about 7; for the 0.8 M, star, the value of R at peak of
overadiabaticity is instead about 13, twice as large as for the
Sun. Note that we would have found a large difference between
the two values of R even if we had adopted two slightly differ-
ent tunings of « for the Sun and for a globular cluster star.

The conclusion seems unavoidable: the “ dilution functions ”
for the Sun and for the 0.8 M, star are profoundly different.
Thus, there is no justification in assuming that if the integral of
the “diluted” temperature profile yields the correct value of
T.«(Sun), the same will be true for a 0.8 M, star.

We have one more piece of evidence in support of our con-
clusion: if the MLT value of R at the peak of overadiabaticity
is larger for the 0.8 M, star than for the Sun, one could legiti-
mately expect that the overadiabaticity profile be “ diluted ” for

.8
R V‘qu
-~ .7

Z(10%cm)

F16. 3.—The behavior of the overadiabatic excess in the subatmospheres of
the Sun and of a star of 0.8 M, Y = 0.23, Z = 0.001, computed according to
the MLT. The ratios R = «H,/z are also plotted, showing that, at the peak of
overadiabaticity, R for the Sun is about half the R for the 0.8 M, star.
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— LOM,
- — - 08M,

Z{(l0%cm)

F1G. 4—The behavior of the overadiabatic excess for the Sun and the 0.8
M, star. In the CM model, the values are about an order of magnitude larger
than in the MLT case. Contrary to what occurs in the MLT, the peak for the
0.8 M, star is a factor of 2 larger than for the Sun.

the 0.8 M more than for the Sun. In fact, within the MLT
framework, the maximum value of the overadiabatic gradient
is, for the 0.8 M, slightly lower than for the Sun; in the CM
model, we should then expect the reverse, a larger peak of
overadiabaticity for the 0.8 M star than for the Sun. This is
indeed what is found: for the 0.8 M, the maximum value of
the overadiabatic gradient is ~ 6.0, whereas that for the Sun is
not even half that value (Fig. 4). We call attention to the fact
that this is due more to the use of a smaller mixing length, that
is, A = z rather than A = «H,, than to the use of the CM
model itself.

Our conclusion is that the “ dilution function,” once tuned to
the Sun, is far from being adequate even for relatively similar
stars, and this in turn seems to undermine the popular assump-
tion that what is good for the Sun is good for other stars.

Furthermore, neither the MLT nor the CM models should
be used in conjunction with A = aH , although a test with the
latter was performed in CM for illustrative purposes. This is so
because with the A = «H , model fitted to the Sun, the problem
of the differences in the spreading function appears also in the
CM model.

We are therefore left with only one version of the CM
model: the convective flux given in CM together with A = z,
0 # 1, and updated physical inputs, for example, the new
opacities.
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8. CONCLUSIONS

This paper contains the following conclusions:

1. We studied an improved version of the CM, which con-
tains (a) Q@ # 1 and (b) new opacities. The new model was
tested on the Sun and found to reproduce the observed T
within 0.5%.

2. We suggest an extension of the model for the mixing
length A = z used in CM so as to account for local contribu-
tions. The new expression is A = «(S, a)z. By adjusting the local
contribution 1 — @, one can in principle achieve a fit to the
solar T, better than 0.5%. However, we find that this is not
really necessary, at least within the contest and the require-
ments of evolutionary studies, while it may become an impor-
tant degree of freedom to be exploited in helioseismology
where one needs a solar model that predicts the solar radius
with an exceedingly high accuracy.

3. We put forward arguments to suggest that the MLT
ought to be replaced by the new model. In fact, in addition to
the more physical description of the spectrum of convective
eddies by the CM model than by the MLT, the following new
points have emerged:

(a) the MLT tends to hide errors in the low-temperature
radiative opacities, giving results of unpredictable reliability
when its tuning on the solar metal abundance is applied to
stars of different metal abundance;

(b) the CM theory keeps separate (and separately
improvable) the uncertainties due to the opacities and to con-
vection as a whole;

(c) the MLT gives incorrect values for the local over-
adiabatic gradients and temperatures in the subatmosphere,
since the scale length involved is inadequate by an order of
magnitude;

(d) the CM theory takes into account the expected physical
behavior of the scale length, giving more reliable gradients, as
required for pulsational computations.

The CM model has improved a serious shortcoming of the
MLT model, namely the inadequate representation of the full
eddy spectrum. Other improvements remain to be incorpo-
rated, to wit, compressibility, inhomogeneities, overshooting,
etc., and they are part of the work presently pursued by the
authors.

One of the authors (I. M.) would like to thank F. G. Rogers
and C. A. Iglesias for providing the new opacity tables. The
authors would also like to thank the anonymous referee for
several comments that have helped us improve the original
version of the paper and V. Caloi for several useful suggestions.

APPENDIX

As discussed in CM, the convective flux F, can be written as

F, = KTH; \(V — V,)(5) ,

with the dimensionless variable S given by

z
§ = gaT(c, Xz)‘1<— a—)A“ ,

(A1)

p (A2)

where X is the entropy. All the other symbols are defined in CM. Different models of turbulent convection yield different forms of ®:
the MLT expression is given in CM by equation (4), while the new CM model yields equations (32) and (33). In what follows, we
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shall compute equation (A2) in the general case of a variable molecular weight u. The general expression for dZ is (Batchelor 1970;

Moffat 1977)

df =c, T""dT — aVdP, (A3)
where the thermal expansion coefficient « is defined as
1%
a=V 1(6_T>P . (Ad)
Using the thermodynamic identity
aP\ [aV
(&), - -G, s
one obtains
a=T 2%, ", (A6)
where (see CG)
dlnP dlnP
= <m>p o BT (0111 p)r ' @7)
Equation (A6) generalizes the expression for « used in CM (eq. [44]).
Alternatively, using the CG symbol Q, we derive
aT=1—(§11:;P=1—x’;=Q. (A8)
Thus, it follows that
xr =X — 1D, (A9)
and we derive
—<&>6—E=V—< P>ﬁ. (A10)
c,) 0z pTe,) ¥,
Using the relation (CG, eq. [9.86])
Cp—Cp= (p%)x% %! (Al1)
and the notation y = ¢,/c,, the right-hand side of equation (10) transforms to
V- —y "t (A12)
Using the definition of V,4 = (d1n T/dIn P),q, it is straightforward to show that
V=0 =yt (A13)
Putting together these results, we have, making use of the variable 4,
S =1624*(V—-V,9) (A14)

with 4 given by equation (1). It may be noticed that u appears explicitly only in the quantity Q, although clearly V,, is no longer

equal to 1 — y~ ! asin the u = constant case.
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